AD—AVEY9 68Y KLAND UNIV ROCHESTER M1 SCHOOL OF ENGINEERING F/6 1271
A FAULT=DIAGNOSIS TECHNIQUE FOR CLOSED FLOW NETWORKS.(U)

JUN 80 K MATSULs, U X PRADHAN F"9620'79‘C-0!l9
AFOSR-TR=80-0951

i
EN

| t-80
onc

UNCLASSIFIED




N
ii -]
E
)
]

s -
izs s gre

[rTTTEEER
>

= =
N N
o i~

MICROCOPY RESOLUTION TEST CHART




/1 . UNCLASSIFIED I EV[I ¢ - )
‘ ( SECURITY CLASSIFICATION OF THIS PAGE (When DO(I‘
, : REPO JOCUMENTATION PAGE BEF%%%DC%‘SEEg%ﬁgNFSORM
1. RE?OR—‘—-N&R / 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
R- Al

: CE (and Subtifle) -~ __ -
~ !'7 Interim /~ * ﬁ\f'.\

’ - N— e e ™
‘\ ﬂ ﬂ"iﬁo R%pfmcuosm o

S. TYPE OF REPORY & PERIOD COVERED

= h—

s = - 6. PERKORMING ONG. REPORT NUMBER -

I/-'Q‘Bu‘\‘"“ - 8. CONTRACT OR GRANT NUMBER(s)
- o ———————

@0% D. K;;l::dhan _ ’// ) %\ ﬁ FU9620-79-C-A19

9. PERFORMING ORGANIZATION NAME AND ADORESS = W
Oakland University ‘
School of Engineering /7. .= -
» @9 Rochester, MI 48063 611C2F T2
wl. CONTROLLING OFFICE NAME AND ADDRESS o \ 12. REPQRT ____:_,
Air Force Office of Scientific Research/NM // HoJ
€0 Bolling AFB, Washington, DC 20332 R T E F—

15

mll. MONITORING AGENCY NAME & ADDRESS(If different, from Controlling Oftice) 15. SECURITY CLASS. (of this report)

158, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

A0O8

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. D T' c
Q : ELECTE

SEP 30 1

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diftferent from Repost

18. SUPPLEMENTARY NOTES

- 19. KEY WORDS (Continue on reverse side if necessary and ldentily by block number)

¥ ABSTRACT (Continus on reverse side I necessary and identily by block numbet)

Closed flow networks represent a mathematical model for transportation networks #
-

multiple resource computer systems and computer commmication networks. A faul
diagnosis technique for these networks is presented which can locate all single
edge failures in the network. This technique is based on a flow causality
relationship developed here. The number of edges that need to be monitored is

shown to be (n-1) for an n-node network. These edges constitute the branches
of a tree in the network. .

c Ay
{ oD , "o EDITION OF | NOV 65 I3 OBSOLETE
i DD 53N 1473 UNCLASSIFIED _ 403 d.%, —
\ e . . SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

e L e n T " T SR R Y PR SR T IR Ay gy
g g - ool o Eicaad R Y 3 F




TR e e e

AFOSR-TR- 80-09§ 1

A FAULT-DIAGNOSIS TECHNIQUE FOR CLOSED FLOW NETWORKS

K. Matsui,

Department of Electrical Engineering
National Defense Academy

Yokosuka, Japan

F49620° N4-¢-ollq

D. K. Pradhan

School of Englneering,
Oakland University,

Rochester, Michigan U.S.A.

Accession For

RTIS GRAXI
IDC TAB
Unannounced
Justification

By

Diatribut‘t on/

A

—fvailed® “+y Codes |
Availand/or
Dist. special

App-oved

86‘“

)‘ Ay Vmﬁ;_v-m TP > Q\w-mnw’.wﬁgw —~y,

for publio Telesse

5 11

- R~ i 1 e PR WOAPCS




Abstract

Closed flow networks represent a mathematical model for
transportation networks, multiple resource computer systems
and computer communication networks. A fault-diagnosis
technique for these networks 1is presented which can locate
all single edge fallures in the network. Thils technique is
based on a flow causality relationship developed here. The
number of edges that need to be monitored is shown to be (n-1)
for an n-node network. These edges constitute the branches

of a tree in the network.
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I. Introduction

1
A flow network can be regarded as a mathematical model of a

large class of traffic systems such as computer communication

networks. Topologically, they form a network of interconnected

3
branches and nodes. A closed (open) network is a flow network

without (with) external inputs/outputs. An open network can be
restructured as a closed network with additional nodes(s). Closed
networks can be used to model multiple resource computer systems,
computer networks, etc?

In this paper, a technique will be developed to locate (diagnose)
faults in a closed flow network. The fault model used here
assumes that a fault in a communication link results in changing
'the flow through the link. It will be further assumed that the
law of conservation of flow holds at any time. Specifically, it
1s shown that by monitoring only flow through (n-1) edges for a n-
node system one can determine the location of failures that result
in the deviation of flow in other links.

This paper has two principal sections. In Section 2, a model
1s developed for the closed flow network and this forms the basis
of the fault-diagnostic technique. Next, is Section 3, a flow
causality 1s developed which describes the relationship between
flows in different links when conservation of flow holds. Based
on this, a fault-dignosti; algorithm 1s developed.

In this paper the links 1iIn a system are classified into two

categories: observable links (o-link) and unobservable link

(u-1link). The flows in the o-links are monitored; by observing

the flows through these links, information regarding failure in




other links 1s derived. A pattern of flow deviations in the
o=1links 1s called diagnostic pattern. The correspondence
between diagnostic patterns and various faults 1s established.
This forms the basls of the fault-diagnostic technigue.

II. Flow Model

A flow network can be represented in terms of a labeled,
directed graph:

S = <V, E, X(t)> where:

vV = {vil i=1, 2, ..n} represents a set of n nodes which
connects two or more links

E = {eJI J=1, 2, ..., m } represents a set of edges which
connects the nodes in the graph.

X(t) = {§ xJ(t)l J =1, 2, ...m and xJ(t) represents the flow
through ej(t)f . This X(t) represents the set of labels for the
edges.

A flow vector X(t) can be defined as:

X(t) = [xl(t), X, (), ..u, xm(t)v] E

where [ ]t represents the transpose operator.
All multiple links between two nodes can be combined into a
single link. Thus, S can be represented as a simple labeled graph.
Assuming that S 1s strongly connected, one has

n<mg¢< n-n.

Let V= 3"1(1’ Vips cees vkni
represent a subset of V.

Let V, = V-V,.
Definition: Let C(Vk) represent a directed cutset defined as:

C(Vk) = ,ekl e, is a directed edge from & node 1in Vk to Vk‘.

Let the.total number of directed cutsets be q. It can be
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readily seen that:
n<qzx 2f-2.
1l if e

Let akJ =

j € C(Vk)

0, otherwise
Definition: Given a directed cutset C(Vk), let a represent a

directed cut vector, defined as:

A= [3k10 2k2s o 2knd

Let uk(t) be the total amount of flow through the links
contained ih C(Vk).

It can be readily seen that

u (£) = A X(¢) k=1, 2, ..., Q. (1)

The amount, u, (t) 1s referred to as the cut flow.

Using the gonservation law of flow, one has

=0, k=1, 2, ..., q. (2)

ITI. Flow Causality in Closed Networks

We now develop some results to characterize the flow vector,
X(t), by using the fundamental equation described in (2).
From (1) and (2), one has:

dx(t)

k dt = Q k'l, 2, ...,q (3)

a
Let aX(t) = [le(t), 6x2(t),..., sxm(t)J, where

Gxi(t) = xi(t+At)-x1(t) represents a small change of flow in the
i-th link between a small time interval, At.
Using the notation, one can rewrite (3) as:
A .8X(t)=0 k =1, 2, ..., q. ' (4)
Now consider the solutions of the si-ultaneous equations

described in (4).
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# Thus m = n2-n and q = 2n-2.

Let S be a complete graph.
But the total number of linearly independent equations in (4) can

be shown to be equal to

8 = (n-l)z(n+1)

Thus there exists:

(n-1) (n-2)
2

W= m-g = (5)
degrees of freedom for the system of simultaneous equations given
in (4).

Let the set of independent simulataneous equation in (4) be:

Ak.Ax(t) =0 k=1,2, ..., 8 (6)

Let the solution of (6) be given as: :

sxye = [ok, (o) o%, 81, ..., ok 0]

This solution in general can be expressed as a linear function
of 8 independent variables given as:

b .
st*(t) =L ¥yy0% (¢) J=1,2, ..., m (7)

i=1

where wiJ =1, 0, -1.
Example 1: Consider a closed network consisting of 3 nodes and

6 links, as shown in Fig. 1. The relationship described in (6)

can be derived as:

#Ms will be seen later, the results of the paper apply to incomplete
graphs, as well,




skl(t)
§x,(t)
§x3(t)
§x,(t)

) | sxs(t)

For n=3, the number of independent varlables is w=1l. Let

Gx; (t) = z. The soultion, Ax¥*(z), can be expressed in terms

of z as:
sx*(z) = [z, 2z, 2z, -2, -2, -2} (8)
It may be observed from the above solution that any deviation

in flow in one link affects all the other links according to (8).

We will call this type of relationship a flow causality of

the network.
This flow causality can be also described in terms of a node-
to-node matrix shown below:
0 zZ =z
D3(z) =l-z 0 =z
z2 -z 0

The matrix Dn(z), for any n-node graph, will be referred to as a

flow causality matrix.

"
Let Z = {zi zZ; = Gxi (¢), 1 1, 2, .0y w; be the set of w

independent variables in the solution of equation (6). The entries

in the matrix, Dn(z), can be expressed in terms of the variables in Z.
In the following, an algorithm is described to construct the matrix

D,(z), for any general n. Let dqj be the element in the 1-th

row j-th column of Dn(z).

-5
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Algorithm to construct Dn(Z)

N 4"

Al: Generate an undirected graph, G = (V, E), by excluding
the direction of each link in S.
4] N
A2: Choose a tree, T, from G so as to form a path. Assign the
number i1 to the i-th node in the path.
A3: Assign a parameter, 2y to each link, eij’ in the cotree.
Ab: Set dii = 0 for all i.
A5: For any dij’ where 1 < j-2 and which has not been assigned in
A3; Assign diJ = 0.

A6: Let dy(k+1) that value which satisfles the following:

n k
Z 2 diJ=0 k’l’ 2, LEEA') n-l
i=k+1 =1

A7: Set dyy = =dyy for 1 > J.

It may be noted that the above algorithm is general andeis
not restricted to complete graphs only.

Example 2: Consider a closed network consisting of eight nodes
and seventeen links below:

Generate an undirected graph corresponding to Figure 2 shown
in Figure 3. Choose a tree (Gothic path shown in Figure 3) and
assign the parameters 2 (k =1, 2, ..., 10) to the 1links in the
cotree. We then have the following matrix based on the above

algorithm.

In the following, y variables correspond to the branches of

The chosen tree and z variables correspond to the links.

o, L




0 -¥q zq

y; © ~¥5

-zl y2 0
Dg(2)=| -z, O Y3
0 -2g 0

-z3 0 0

L.

The relationships between y and z variables are given below:

_39
0

y, =z +z, * Z3 + 2z

y2 = zl + 22 + z3
y3 = z2 + z3 + zu
yu = z3 + Z)y + 25

y5=z3+Zu+26

yp = 2yt g * 2,

IV. Fault diagnosis

+

+

ZS 0 26 0

0 vy¢ 0 -¥q

“210 0 VY7 O _

It 1s assumed here that a fault in the network results in an

abnormal change of flow through one or more edges. If all the E

edges are monitored then detection of such change is a trivial

problem. However monitoring all the edges may be impractical

since there are O(nz) possible edges for an n-node network.

In this section, we provide a solution to this problem. A

technique is presented to locate faulty edges by observing

-7=
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the flow on 2 small subset of edges. The number of edges to be
monitored need not exceed (n-l) for an n-node graph. Furthermore,
these edges constitute the branches of a tree and therefore
monitoring these edges may be easy to implement.

First we present an example to provide motivation for the
result presented later in the section.
Example 3: Consider the network shown in Figure 3. Tre following
table will be hereafter referred to as a flow causality table and can
be derived from the D matix shown in Example 2. This table
describes a relatlonship between the flows in different edges.

Table 1 Flow causality table for Example 2

Link €13 €14 €36 ©81 S35 ©Sp7 ©3g 4537 €47 ©s8

€12 * * * %

€53 * * * * * *

ey * * * % * * *

eys * * * H * 2 *

esg * * * * * * * 1
e67 * * * * * *

- * * *

This table provides complete informatlion regarding how a flow
deviation in one edge results in compensating changes in other
edges. TFor example, change in flow €3 results 1n compensating

changes 1in e1- and €3¢

By monltoring the flows through the branches of the tree,
one can obtain information regarding any changes of flow in

other edges. 1In fact, there exists a unique correspondence between

-8




the change in flow in any edge and the change of flow through the

branches of the tree. This fact can be used to design a syndrome table ;
@ this table is shown below. Here, a 1(0) represents a change (no change)

in the flow. It may be seen from the different syndrome patterns

that a faulty link which produces a change of flow through itself will

result in a change of flow in a combination of branches of the tree.

This combination is distinct for two different edges. Thus, a faulty

edge can be located by using the syndrome table.

€12 e23 639 ehS e56 e67 e78 Faulty edge

1 0 0 0 0 0 0 ey,

0 1 0 0 0 0 0 e23

0 0 1 0 0 0 0 e3u

0 0 0 1l 0 0 0 eu5

Table 2: Syndrome

0 0 0 0 1 0 0 ecg Table
0 0 0 0 0 1 0 g7

0 0 0 0 0 0 1l e78

1l 1 0 0 0 0 0 e13

1 1l 1 0 0 0 0 ey

1 1l 1 1 1 0 0 €16

1 1 1 1 1 1 1 eg;

0 1 1 1 0 0 0 €55
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In the following, we prove the general result:

Theorem 1: A failure in any edge in a closed flow network S, can be
diagnosed (located) by observing the flows through the branches of
any tree ; in S.

Proof: Let the branches of a tree; T, correspond to o-links and the
remalining edges correspond to u-links.

An elementary cycle can be constructed by using only one
o-1link and two or more u-links. These sets of elementary cycles
form a linearly independent set.

Suppose a failure arises in the o-1ink i1 in S. Let 1 be
contained in the elementary cycle Li' There are no other o-links
included in Li' Thus the symptom of the failure will appear in
o-link 1 only and hence is diagnosed.

On the other hand consider a failure that arises in u-link i.

Let i be included in the elementary cycles L L

11° Lyps cves Lyp
It may be seen that : (a) k > 2; (b) the fallure in 1 will result
in a change of flow in exactly k, o-links contained in Lil’ Liz,"-’Lik
and (c) the combination Ly;, Ly,s..., Ly, 1s unique for each link 1.
Hence this failure is also diagnosable. Q.E.D.
Corollary: The observable points in closed network S for single
failure diagnosis need not exceed (n-1).

It may be seen that certain multiple failures may also be
diagnosable., For example a double failure can be dlagnosed if
they occur 1in two disjoint elementary cycles.
V. Conclusion:

This paper presents a fault-diagnosls technique for a closed

flow network. A flow causality 1s derived from the topology of

a flow network. Based on this, a technique 1is described

=10~
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that locates all single edge fallures by observing flow
through (n-1) edges. These edges constitute the branches of a
tree of an n-node network.

Other potential applications of the results of the paper to
other areas such as system fault-diagnosist distributed computing

need to be investlgated.
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Xy (t)

Pigure 1. A closed network for Example 1
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Pigure 2. A closed network for Example 2




Figure 3. Associated graph G
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